Estimating Real Estate Value-at-Risk Using Wavelet Denoising and Time Series Model
نویسندگان
چکیده
As the real estate market develops rapidly and is increasingly securitized, it has become an important investment asset in the portfolio design. Thus the measurement of its market risk exposure has attracted attentions from academics and industries due to its peculiar behavior and unique characteristics such as heteroscedasticity and multi scale heterogeneity in its risk and noise evolution etc. This paper proposes the wavelet denoising ARMA-GARCH approach for measuring the market risk level in the real estate sector. The multi scale heterogeneous noise level is determined in the level dependent manner in wavelet analysis. The autocorrelation and heteroscedasticity characteristics for both data and noises are modeled in the ARMA-GARCH framework. Experiment results in Chinese real estate market suggest that the proposed methodology achieves the superior performance by improving the reliability of VaR estimated upon those from traditional ARMA-GARCH approach.
منابع مشابه
Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach
In the increasingly globalized economy these days, the major crude oil markets worldwide are seeing higher level of integration, which results in higher level of dependency and transmission of risks among different markets. Thus the risk of the typical multi-asset crude oil portfolio is influenced by dynamic correlation among different assets, which has both normal and transient behaviors. This...
متن کاملPervasive white and colored noise removing from magnetotelluric time series
Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملEvaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)
One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...
متن کامل